Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Use of non-maximal entangled state for free space BBM92 quantum key distribution protocol
 
  • Details

Use of non-maximal entangled state for free space BBM92 quantum key distribution protocol

Source
arXiv
ISSN
2331-8422
Date Issued
2023-07-01
Author(s)
Biswas, Ayan
Mishra, Sarika
Patil, Satyajeet
Banerji, Anindya
Prabhakar, Shashi
Singh, Ravindra P.
Abstract
Satellite-based quantum communication for secure key distribution is becoming a more demanding field of research due to its unbreakable security. Prepare and measure protocols such as BB84 consider the satellite as a trusted device, fraught with danger looking at the current trend for satellite-based optical communication. Therefore, entanglement-based protocols must be preferred since, along with overcoming the distance limitation, one can consider the satellite as an untrusted device too. E91 protocol is a good candidate for satellite-based quantum communication; but the key rate is low as most of the measured qubits are utilized to verify a Bell-CHSH inequality to ensure security against Eve. An entanglement-based protocol requires a maximally entangled state for more secure key distribution. The current work discusses the effect of non-maximality on secure key distribution. It establishes a lower bound on the non-maximality condition below which no secure key can be extracted. BBM92 protocol will be more beneficial for key distribution as we found a linear connection between the extent of violation for Bell-CHSH inequality and the quantum bit error rate for a given setup.
URI
https://doi.org/10.48550/arXiv.2307.02149
https://d8.irins.org/handle/IITG2025/18451
Subjects
Quantum
BBM92-protocol
Bell-CHSH
Quantum communication
Non-maximality
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify