Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Finite-temperature dynamics of vortices in Bose-Einstein condensates
 
  • Details

Finite-temperature dynamics of vortices in Bose-Einstein condensates

Source
Physical Review A
Date Issued
2014-01-01
Author(s)
Gautam, S.
Roy, Arko
Mukerjee, Subroto
DOI
10.1103/PhysRevA.89.013612
Volume
vol. 89
Issue
no. 1
Abstract
We study the dynamics of a single vortex and a pair of vortices in quasi two-dimensional Bose-Einstein condensates at finite temperatures. To this end, we use the stochastic Gross–Pitaevskii equation, which is the Langevin equation for the Bose–Einstein condensate. For a pair of vortices, we study the dynamics of both the vortex-vortex and vortex-antivortex pairs, which are generated by rotating the trap and moving the Gaussian obstacle potential, respectively. Due to thermal fluctuations, the constituent vortices are not symmetrically generated with respect to each other at finite temperatures. This initial asymmetry coupled with the presence of random thermal fluctuations in the system can lead to different decay rates for the component vortices of the pair, especially in the case of two corotating vortices.
Publication link
https://arxiv.org/pdf/1309.6205
URI
https://d8.irins.org/handle/IITG2025/30102
Subjects
Bose-Einstein condensates
Finite temperatures
Stochastic Gross–Pitaevskii
Vortices
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify