Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Multi-level encoder-decoder architectures for image restoration
 
  • Details

Multi-level encoder-decoder architectures for image restoration

Source
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN
21607508
Date Issued
2019-06-01
Author(s)
Mastan, Indra Deep
Raman, Shanmuganathan  
DOI
10.1109/CVPRW.2019.00223
Volume
2019-June
Abstract
Many real-world solutions for image restoration are learning-free and based on handcrafted image priors such as self-similarity. Recently, deep-learning methods that use training data have achieved state-of-the-art results in various image restoration tasks (e.g., super-resolution and inpainting). Ulyanov et al. bridge the gap between these two families of methods (CVPR 18). They have shown that learning-free methods perform close to the state-of-the-art learning-based methods (approximately 1 PSNR). Their approach benefits from the encoder-decoder network. In this paper, we propose a framework based on the multi-level extensions of the encoder-decoder network, to investigate interesting aspects of the relationship between image restoration and network construction independent of learning. Our framework allows various network structures by modifying the following network components: skip links, cascading of the network input into intermediate layers, a composition of the encoder-decoder subnetworks, and network depth. These handcrafted network structures illustrate how the construction of untrained networks influence the following image restoration tasks: denoising, super-resolution, and inpainting. We also demonstrate image reconstruction using flash and no-flash image pairs. We provide performance comparisons with the state-of-the-art methods for all the restoration tasks above.
Publication link
http://export.arxiv.org/pdf/1905.00322
URI
https://d8.irins.org/handle/IITG2025/24380
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify