Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Thermoelectric behaviour of hot collisional and magnetized QCD medium from an effective kinetic theory
 
  • Details

Thermoelectric behaviour of hot collisional and magnetized QCD medium from an effective kinetic theory

Source
arXiv
ISSN
2331-8422
Date Issued
2021-01-01
Author(s)
Kurian, Manu
Abstract
The thermoelectric behaviour of quark-gluon plasma has been studied within the framework of an effective kinetic theory by adopting a quasiparticle model to incorporate the thermal medium effects. The thermoelectric response of the medium has been quantified in terms of the Seebeck coefficient. The dependence of the collisional aspects of the QCD medium on the Seebeck coefficient has been estimated by utilizing relaxation time approximation and Bhatnagar-Gross-Krook collision kernels in the effective Boltzmann equation. The thermoelectric coefficient is seen to depend on the quark chemical potential and collision aspects of the medium. Besides, the thermoelectric effect has been explored in a magnetized medium and the respective transport coefficients, such as magnetic field-dependent Seebeck coefficient and Nernst coefficient, have been estimated. The impacts of hot QCD medium interactions incorporated through the effective model and the magnetic field on the thermoelectric responses of the medium have been observed to be more prominent in the temperature regimes not very far from the transition temperature.
URI
https://arxiv.org/abs/2102.00435
https://d8.irins.org/handle/IITG2025/18406
Subjects
High Energy Physics
Phenomenology
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify