Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Empirical Evaluation of PRNU Fingerprint Variation for Mismatched Imaging Pipelines
 
  • Details

Empirical Evaluation of PRNU Fingerprint Variation for Mismatched Imaging Pipelines

Source
2020 IEEE International Workshop on Information Forensics and Security Wifs 2020
Date Issued
2020-12-06
Author(s)
Joshi, Sharad
Korus, Pawel
Khanna, Nitin
Memon, Nasir
DOI
10.1109/WIFS49906.2020.9360911
Abstract
We assess the variability of PRNU-based camera fingerprints with mismatched imaging pipelines (e.g., different camera ISP or digital darkroom software). We show that camera fingerprints exhibit non-negligible variations in this setup, which may lead to unexpected degradation of detection statistics in real-world use-cases. We tested 13 different pipelines, including standard digital darkroom software and recent neural-networks. We observed that correlation between fingerprints from mismatched pipelines drops on average to 0.38 and the PCE detection statistic drops by over 40%. The degradation in error rates is the strongest for small patches commonly used in photo manipulation detection, and when neural networks are used for photo development. At a fixed 0.5% FPR setting, the TPR drops by 17 ppt (percentage points) for 128 px and 256 px patches.
Publication link
https://arxiv.org/pdf/2004.01929
URI
https://d8.irins.org/handle/IITG2025/25670
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify