Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. ON ÉTALE HYPERCOHOMOLOGY OF HENSELIAN REGULAR LOCAL RINGS WITH VALUES IN p-ADIC ÉTALE TATE TWISTS
 
  • Details

ON ÉTALE HYPERCOHOMOLOGY OF HENSELIAN REGULAR LOCAL RINGS WITH VALUES IN p-ADIC ÉTALE TATE TWISTS

Source
Homology Homotopy and Applications
ISSN
15320073
Date Issued
2024-01-01
Author(s)
Sakagaito, Makoto
DOI
10.4310/HHA.2024.v26.n2.a2
Volume
26
Issue
2
Abstract
Let R be the henselization of a local ring of a semistable family over the spectrum of a discrete valuation ring of mixed characteristic (0, p) and k the residue field of R. In this paper, we prove an isomorphism of étale hypercohomology groups (Formula presented) for any integers n ≽ 0 and r > 0 where (Formula presented) is the p-adic Tate twist and W<inf>r</inf>Ω<sup>n</sup><inf>log</inf> is the logarithmic Hodge-Witt sheaf. As an application, we prove the local-global principle for Galois cohomology groups over function fields of curves over an excellent henselian discrete valuation ring of mixed characteristic.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/29124
Subjects
Gersten-type conjecture | local-global principle | p-adic Tate twist
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify