Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. In vitro and in silico evaluation of N-(alkyl/aryl)-2-chloro-4-nitro-5- [(4-nitrophenyl)sulfamoyl]benzamide derivatives for antidiabetic potential using docking and molecular dynamic simulations
 
  • Details

In vitro and in silico evaluation of N-(alkyl/aryl)-2-chloro-4-nitro-5- [(4-nitrophenyl)sulfamoyl]benzamide derivatives for antidiabetic potential using docking and molecular dynamic simulations

Source
Journal of Biomolecular Structure and Dynamics
ISSN
07391102
Date Issued
2022-01-01
Author(s)
Thakal, Samridhi
Singh, Amit
Singh, Vikramjeet
DOI
10.1080/07391102.2020.1854116
Volume
40
Issue
9
Abstract
A series of N-(alkyl/aryl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl]benzamide derivatives were synthesized and evaluated for its in vitro antidiabetic potential against α-glucosidase and α-amylase enzymes and also for its antimicrobial potential. Compounds N-(2-methyl-4-nitrophenyl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl]benzamide and N-(2-methyl-5-nitrophenyl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl]benzamide were found to be the most potent α-glucosidase and α-amylase inhibitors with IC<inf>50</inf> values of 10.13 and 1.52 µM, respectively. The docking results depicted reasonable dock score −10.2 to −8.0 kcal/mol (α-glucosidase), −11.1 to −8.3 kcal/mol (α-amylase) and binding interactions of synthesized molecules with respective targets with enzymes. During molecular dynamic simulations, analysis of RMSD of ligand protein complex suggested stability of the most active compound at binding site of target proteins. Compound N-(2-chloro-4-nitrophenyl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl] benzamide showed antibacterial potential against Gram positive and Gram negative bacteria and compound N-(2-methyl-5-nitrophenyl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl] benzamide showed excellent antifungal potential against Candida albicans and Aspergillus niger. The computational studies were also executed to predict the drug-likeness and ADMET properties of the title compounds. The N-(alkyl/aryl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl]benzamide derivatives showed significant antidiabetic and antimicrobial potential which is equally supported by the molecular dynamic and docking studies. This study will prove useful in revealing the molecular structure and receptor target site details which can be further utilized for the development of newer active antidiabetic and antimicrobial agents.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23710
Subjects
antimicrobial activity | in silico ADMET | molecular modeling | α-amylase | α-Glucosidase
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify