Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. 3D POINT CLOUD COMPLETION USING STACKED AUTO-ENCODER FOR STRUCTURE PRESERVATION
 
  • Details

3D POINT CLOUD COMPLETION USING STACKED AUTO-ENCODER FOR STRUCTURE PRESERVATION

Source
Proceedings International Conference on Image Processing Icip
ISSN
15224880
Date Issued
2021-01-01
Author(s)
Kumari, Seema
Raman, Shanmuganathan  
DOI
10.1109/ICIP42928.2021.9506398
Volume
2021-September
Abstract
3D point cloud completion problem deals with completing the shape from partial points. The problem finds its application in many vision-related applications. Here, structure plays an important role. Most of the existing approaches either do not consider structural information or consider structure at the decoder only. For maintaining the structure, it is also necessary to maintain the position of the available 3D points. However, most of the approaches lack the aspect of maintaining the available structural position. In this paper, we propose to employ stacked auto-encoder in conjunction a with shared Multi-Layer Perceptron (MLP). MLP converts each 3D point into a feature vector and the stacked auto-encoder helps in maintaining the available structural position of the input points. Further, it explores the redundancy present in the feature vector. It aids to incorporate coarse to fine scale information that further helps in better shape representation. The embedded feature is finally decoded by a structural preserving decoder. Both the encoding and the decoding operations of our method take care of preserving the structure of the available shape information. The experimental results demonstrate the structure preserving capability of our network as compared to the state-of-the-art methods.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25593
Subjects
Chamfer distance | MLP | Point cloud completion | Stacked auto-encoder | Structure preservation
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify