Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Extreme local recycling of moisture via wetlands and forests in North-East Indian subcontinent: a Mini-Amazon
 
  • Details

Extreme local recycling of moisture via wetlands and forests in North-East Indian subcontinent: a Mini-Amazon

Source
Scientific Reports
Date Issued
2023-12-01
Author(s)
Ganguly, Akash
Oza, Harsh
Padhya, Virendra
Pandey, Amit
Chakra, Swagatika
Deshpande, R. D.
DOI
10.1038/s41598-023-27577-5
Volume
13
Issue
1
Abstract
Moisture recycling in precipitation is an important hydrological process, accounting for ~ 67% globally. North-east India, home to the world's wettest place, boasts vast wetlands and forest-cover. Despite its proximity to the coast, we find locally recycled moisture to be the primary annual source of rainfall (~ 45%). During the pre-monsoon season, the enriched δ<sup>18</sup>O (~ − 0.7 ‰) and high d-excess (~ 14 ‰) are ascribed to enhanced transpiration, owing to atmospheric instability which causes Nor’westers. During the Monsoon season, oceanic flux provides increased surficial moisture, enabling deep-localised convection via evaporation. Significant localised recycling, even during the Monsoon season is estimated (~ 38%), with predominantly high d-excess in precipitation during latter half of the monsoon with increased moisture contribution from floods in Brahmaputra (high d-excess). The increasing δ<sup>18</sup>O and d-excess during the post-monsoon season is associated with progressively lesser rainout history and increased localized recycling (~ 67%). In light of the dwindling wetlands and forest-cover, our study highlights their indispensable role in governing regional hydro-meteorology and water availability.
Publication link
https://www.nature.com/articles/s41598-023-27577-5.pdf
URI
https://d8.irins.org/handle/IITG2025/26522
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify