Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Image of ideals under linear K-derivations and the LNED conjecture
 
  • Details

Image of ideals under linear K-derivations and the LNED conjecture

Source
Journal of Pure and Applied Algebra
ISSN
00224049
Date Issued
2025-09-01
Author(s)
Gupta, Sakshi
DOI
10.1016/j.jpaa.2025.108041
Volume
229
Issue
9
Abstract
Let K be a field of characteristic zero and K[X]=K[x<inf>1</inf>,x<inf>2</inf>,…,x<inf>n</inf>] be the polynomial algebra in n variables over K. We show that, for a linear K-derivation d of K[X] and the maximal ideal m=(x<inf>1</inf>,x<inf>2</inf>,…,x<inf>n</inf>) of K[X], if d(m) is a Mathieu-Zhao subspace of K[X], then the image of every m-primary ideal under d forms a Mathieu-Zhao subspace of K[X]. Additionally, we observe that the image of all monomial ideals under the K-derivation d=f∂<inf>x<inf>1</inf></inf> of K[X], for f∈K[X] forms an ideal of K[X]. Finally, we prove that the image of certain monomial ideals under a linear locally nilpotent K-derivation of K[x<inf>1</inf>,x<inf>2</inf>,x<inf>3</inf>] defined by d=x<inf>2</inf>∂<inf>x<inf>1</inf></inf>+x<inf>3</inf>∂<inf>x<inf>2</inf></inf> forms a Mathieu-Zhao subspace.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28017
Subjects
K-derivation | LNED conjecture | Mathieu-Zhao subspaces
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify