Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Fast semantic feature extraction using superpixels for soft segmentation
 
  • Details

Fast semantic feature extraction using superpixels for soft segmentation

Source
Communications in Computer and Information Science
ISSN
18650929
Date Issued
2020-01-01
Author(s)
Verma, Shashikant
Nagar, Rajendra
Raman, Shanmuganathan  
DOI
10.1007/978-981-15-4015-8_6
Volume
1147 CCIS
Abstract
In this work, we address the problem of extracting high dimensional, soft semantic feature descriptors for every pixel in an image using a deep learning framework. Existing methods rely on a metric learning objective called multi-class N-pair loss, which requires pairwise comparison of positive examples (same class pixels) to all negative examples (different class pixels). Computing this loss for all possible pixel pairs in an image leads to a high computational bottleneck. We show that this huge computational overhead can be reduced by learning this metric based on superpixels. This also conserves the global semantic context of the image, which is lost in pixel-wise computation because of the sampling to reduce comparisons. We design an end-to-end trainable network with a loss function and give a detailed comparison of two feature extraction methods: pixel-based and superpixel-based. We also investigate hard semantic labeling of these soft semantic feature descriptors.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/24312
Subjects
Feature extraction | Image segmentation | Semantic representation | Superpixels
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify