Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Frobenius number and minimal presentation of certain numerical semigroups
 
  • Details

Frobenius number and minimal presentation of certain numerical semigroups

Date Issued
2018-02-01
Author(s)
Mehta, Ranjana
Saha, Joydip
Sengupta, Indranath
Abstract
Suppose e?4 be an integer, a=e+1, b>a+(e?3)d, gcd(a,d)=1 and d?(b?a). Let M={a,a+d,a+2d,�,a+(e?3)d,b,b+d}, which forms a minimal generating set for the numerical semigroup ?e(M), generated by the set M. We calculate the Ap\'{e}ry set and the Frobenius number of ?e(M). We also show that the minimal number of generators for the defining ideal p of the affine monomial curve parametrized by X0=ta, X1=ta+d,�,Xe?3=ta+(e?3)d, Xe?2=tb, Xe?1=tb+d is a bounded function of e.
URI
http://arxiv.org/abs/1802.02564v1
https://d8.irins.org/handle/IITG2025/20043
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify