Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Fixed-posit: a floating-point representation for error-resilient applications
 
  • Details

Fixed-posit: a floating-point representation for error-resilient applications

Source
arXiv
Date Issued
2021-04-01
Author(s)
Gohil, Varun
Walia, Sumit
Mekie, Joycee
Awasthi, Manu
Abstract
Today, almost all computer systems use IEEE-754 floating point to represent real numbers. Recently, posit was proposed as an alternative to IEEE-754 floating point as it has better accuracy and a larger dynamic range. The configurable nature of posit, with varying number of regime and exponent bits, has acted as a deterrent to its adoption. To overcome this shortcoming, we propose fixed-posit representation where the number of regime and exponent bits are fixed, and present the design of a fixed-posit multiplier. We evaluate the fixed-posit multiplier on error-resilient applications of AxBench and OpenBLAS benchmarks as well as neural networks. The proposed fixed-posit multiplier has 47%, 38.5%, 22% savings for power, area and delay respectively when compared to posit multipliers and up to 70%, 66%, 26% savings in power, area and delay respectively when compared to 32-bit IEEE-754 multiplier. These savings are accompanied with minimal output quality loss (1.2% average relative error) across OpenBLAS and AxBench workloads. Further, for neural networks like ResNet-18 on ImageNet we observe a negligible accuracy loss (0.12%) on using the fixed-posit multiplier.
URI
http://arxiv.org/abs/2104.04763
https://d8.irins.org/handle/IITG2025/19947
Subjects
Hardware
Architecture
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify