Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Nearest Kronecker Product Decomposition Based Normalized Least Mean Square Algorithm
 
  • Details

Nearest Kronecker Product Decomposition Based Normalized Least Mean Square Algorithm

Source
ICASSP IEEE International Conference on Acoustics Speech and Signal Processing Proceedings
ISSN
15206149
Date Issued
2020-05-01
Author(s)
Bhattacharjee, Sankha Subhra
George, Nithin V.  
DOI
10.1109/ICASSP40776.2020.9053421
Volume
2020-May
Abstract
Recently, nearest Kronecker product (NKP) decomposition based Wiener filter and Recursive Least Squares (RLS) have been proposed and was found to be a good candidate for system identification and echo cancellation and was shown to offer better tracking performance along with lower computational complexity, especially for identification of low-rank systems. In this paper, we derive the Least Mean Square (LMS) versions of adaptive algorithms which take advantage of NKP decomposition, namely NKP-LMS and NKP Normalized LMS (NKP-NLMS) algorithms. We compare the convergence and tracking performance along with computational complexity between standard NLMS, standard RLS, NKP based RLS (RLS-NKP), the standard Affine Projection Algorithm (APA) and NKP-NLMS algorithm, to evaluate the efficacy of NKP-NLMS algorithm in the context of system identification. Simulation results show that NKP-NLMS can be a good candidate for system identification, especially for sparse/low rank systems.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/24160
Subjects
Adaptive filter | Least mean square | Low rank approximation | nearest Kronecker product | System identification
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify