Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Cognitive and Brain Sciences
  4. CBS Publications
  5. Can EEG resting state data benefit data-driven approaches for motor-imagery decoding?
 
  • Details

Can EEG resting state data benefit data-driven approaches for motor-imagery decoding?

Source
arXiv
Date Issued
2024-10-01
Author(s)
Mehta, Rishan
Rajpura, Param
Meena, Yogesh Kumar
DOI
10.48550/arXiv.2411.09789
Abstract
Resting-state EEG data in neuroscience research serve as reliable markers for user identification and reveal individual-specific traits. Despite this, the use of resting-state data in EEG classification models is limited. In this work, we propose a feature concatenation approach to enhance decoding models' generalization by integrating resting-state EEG, aiming to improve motor imagery BCI performance and develop a user-generalized model. Using feature concatenation, we combine the EEGNet model, a standard convolutional neural network for EEG signal classification, with functional connectivity measures derived from resting-state EEG data. The findings suggest that although grounded in neuroscience with data-driven learning, the concatenation approach has limited benefits for generalizing models in within-user and across-user scenarios. While an improvement in mean accuracy for within-user scenarios is observed on two datasets, concatenation doesn't benefit across-user scenarios when compared with random data concatenation. The findings indicate the necessity of further investigation on the model interpretability and the effect of random data concatenation on model robustness.
URI
http://arxiv.org/abs/2411.09789
https://d8.irins.org/handle/IITG2025/19685
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify