Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. The v-Number of Binomial Edge Ideals
 
  • Details

The v-Number of Binomial Edge Ideals

Source
Acta Mathematica Vietnamica
ISSN
02514184
Date Issued
2024-12-01
Author(s)
Ambhore, Siddhi Balu
Saha, Kamalesh
Sengupta, Indranath  
DOI
10.1007/s40306-024-00540-w
Volume
49
Issue
4
Abstract
The invariant v-number was introduced very recently in the study of Reed-Muller-type codes. Jaramillo and Villarreal (J. Combin. Theory Ser. A 177:105310, 2021) initiated the study of the v-number of edge ideals. Inspired by their work, we take the initiation to study the v-number of binomial edge ideals in this paper. We discuss some properties and bounds of the v-number of binomial edge ideals. We explicitly find the v-number of binomial edge ideals locally at the associated prime corresponding to the cutset ∅. We show that the v-number of Knutson binomial edge ideals is less than or equal to the v-number of their initial ideals. Also, we classify all binomial edge ideals whose v-number is 1. Moreover, we try to relate the v-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a conjecture in this direction.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28614
Subjects
Binomial edge ideals | Castelnuovo-Mumford regularity | Completion set | Initial ideals | v-number
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify