Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Search for intermediate mass black hole binaries in the first and second observing runs of the advanced LIGO and virgo network
 
  • Details

Search for intermediate mass black hole binaries in the first and second observing runs of the advanced LIGO and virgo network

Source
arXiv
ISSN
2331-8422
Date Issued
2019-07-01
Author(s)
Sengupta, Anand S.
Abstract
Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2?[120,800]M? and mass ratios q=m2/m1?[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20~Gpc?3yr?1 (in co-moving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100M? and dimensionless spins ?1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ?5 that reported after Advanced LIGO's first observing run.
URI
http://arxiv.org/abs/1906.08000
https://d8.irins.org/handle/IITG2025/18357
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify