Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Towards Training Fault Tolerant and Noise Immune Diffractive Optical Neural Engines
 
  • Details

Towards Training Fault Tolerant and Noise Immune Diffractive Optical Neural Engines

Author(s)
S.S., Panda, Soumyashree Soumyaprakash
R.S., Hegde, Ravi Sadananda  
Abstract
We report a novel robust training regimen for Diffractive Optical Networks that uses gradient based regularization terms in the training objective. Enhanced fault tolerance and noise immunity has been observed with models trained with this method. � 2021 Elsevier B.V., All rights reserved.
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120464788&partnerID=40&md5=0210fecd3326502f1532562b8b62f8fd
https://d8.irins.org/handle/IITG2025/29363
Keywords
Optical fiber communication
Optical fibers
Fault-tolerant
Gradient based
Noise immune
Noise immunity
Optical-
Regularization terms
Robust trainings
Fault tolerance
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify