Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Fully nonlinear degenerate equations with sublinear gradient term
 
  • Details

Fully nonlinear degenerate equations with sublinear gradient term

Source
Nonlinear Analysis Theory Methods and Applications
ISSN
0362546X
Date Issued
2021-05-01
Author(s)
Tyagi, J.  
DOI
10.1016/j.na.2020.112241
Volume
206
Abstract
We establish existence and uniqueness of positive viscosity solutions of P<inf>k</inf><sup>±</sup>(D<sup>2</sup>u)+|Du|<sup>q</sup>u<sup>p</sup>=0inΩ,u=0on∂Ω,where k<N,Ω is a bounded domain in R<sup>N</sup>,N≥2,0<p<1,0≤q<1 and P<inf>k</inf><sup>±</sup> are degenerate elliptic operators. First, we use of a change of dependent variable originating in Brezis and Kamin (1992) in order to convert the equation into one with the right monotonicity in the u-variable. Thereafter by applying Perron's method, we prove the existence and uniqueness of the solutions. Using an a-priori estimate, we show the nonexistence of subsolutions. We also find the ranges of p and q for the existence and nonexistence results.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25446
Subjects
Comparison principle | Fully nonlinear degenerate elliptic operators | Gradient nonlinearity | Viscosity solution
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify