Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Revisiting shear stress tensor evolution: Nonresistive magnetohydrodynamics with momentum-dependent relaxation time
 
  • Details

Revisiting shear stress tensor evolution: Nonresistive magnetohydrodynamics with momentum-dependent relaxation time

Source
Physical Review D
ISSN
24700010
Date Issued
2024-07-01
Author(s)
Singh, Sunny Kumar
Kurian, Manu
Chandra, Vinod  
DOI
10.1103/PhysRevD.110.014004
Volume
110
Issue
1
Abstract
This study aims to develop second-order relativistic viscous magnetohydrodynamics (MHD) derived from kinetic theory within an extended relaxation time approximation (momentum/energy dependent) for the collision kernel. The investigation involves a detailed examination of shear stress tensor evolution equations and associated transport coefficients. The Boltzmann equation is solved using a Chapman-Enskog-like gradient expansion for a charge-conserved conformal system, incorporating a momentum-dependent relaxation time. The derived relativistic nonresistive, viscous second-order MHD equations for the shear stress tensor reveal significant modifications in the coupling with dissipative charge current and magnetic field due to the momentum dependence of the relaxation time. By utilizing a power law parametrization to quantify the momentum dependence of the relaxation time, the anisotropic magnetic field-dependent shear coefficients in the Navier-Stokes limit have been investigated. The resulting viscous coefficients are seen to be sensitive to the momentum dependence of the relaxation time.
Publication link
https://doi.org/10.1103/physrevd.110.014004
URI
https://d8.irins.org/handle/IITG2025/28855
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify