Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast
 
  • Details

A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast

Source
Renewable Energy
ISSN
09601481
Date Issued
2019-09-01
Author(s)
Kushwaha, Vishal
Pindoriya, Naran M.  
DOI
10.1016/j.renene.2019.03.020
Volume
140
Abstract
A very short-term solar PV power generation forecast can be extremely helpful for real-time balancing operation in an electricity market which in turn will profit both energy suppliers as well as customers. However, the intermittency of solar PV power introduces inaccuracies in its forecast. To address this challenge, the research paper has studied the effect of wavelet decomposition of solar PV power time series on its forecast. A novel and time adaptive, Seasonal Autoregressive Integrated Moving Average (SARIMA)-Random Vector Functional Link (RVFL) neural network hybrid model assisted by Maximum Overlap Discrete Wavelet Transform (MODWT) has been proposed. The solar PV power generation data obtained from roof-top solar PV plants installed at IIT Gandhinagar is used to develop and validate the forecast models. Various numerical forecast accuracy measures have been calculated which show an improvement in accuracy and adaptability of proposed forecast model over constituent models.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23203
Subjects
Artificial neural network | Feature selection | Forecasting | Hybrid model | Solar PV power | Wavelet transform
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify