Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Searching for gravitational waves from binary coalescence
 
  • Details

Searching for gravitational waves from binary coalescence

Source
Physical Review D Particles Fields Gravitation and Cosmology
ISSN
15507998
Date Issued
2013-01-22
Author(s)
Babak, S.
Biswas, R.
Brady, P. R.
Brown, D. A.
Cannon, K.
Capano, C. D.
Clayton, J. H.
Cokelaer, T.
Creighton, J. D.E.
Dent, T.
Dietz, A.
Fairhurst, S.
Fotopoulos, N.
González, G.
Hanna, C.
Harry, I. W.
Jones, G.
Keppel, D.
McKechan, D. J.A.
Pekowsky, L.
Privitera, S.
Robinson, C.
Rodriguez, A. C.
Sathyaprakash, B. S.
Sengupta, A. S.  
Vallisneri, M.
Vaulin, R.
Weinstein, A. J.
DOI
10.1103/PhysRevD.87.024033
Volume
87
Issue
2
Abstract
We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multidetector search for binary coalescence has been used to search data taken in recent LIGO and Virgo runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise. © 2013 American Physical Society.
Publication link
http://hdl.handle.net/11858/00-001M-0000-000E-E974-4
URI
https://d8.irins.org/handle/IITG2025/21178
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify