Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Minimal graded free resolutions for monomial curves in A4 defined by almost arithmetic sequences
 
  • Details

Minimal graded free resolutions for monomial curves in A4 defined by almost arithmetic sequences

Source
Communications in Algebra
ISSN
00927872
Date Issued
2017-02-01
Author(s)
Kumar Roy, Achintya
Sengupta, Indranath  
Tripathi, Gaurab
DOI
10.1080/00927872.2016.1175580
Volume
45
Issue
2
Abstract
Let m = (m<inf>0</inf>, m<inf>1</inf>, m<inf>2</inf>, n) be an almost arithmetic sequence, i.e., a sequence of positive integers with gcd(m<inf>0</inf>, m<inf>1</inf>, m<inf>2</inf>, n) = 1, such that m<inf>0</inf> < m<inf>1</inf> < m<inf>2</inf> form an arithmetic progression, n is arbitrary and they minimally generate the numerical semigroup Γ =m<inf>0</inf>ℕ +m<inf>1</inf>ℕ +m<inf>2</inf>ℕ +nℕ. Let k be a field. The homogeneous coordinate ring k[Γ] of the affine monomial curve parametrically defined by X<inf>0</inf> = t<sup>m<inf>0</inf></sup>, X<inf>1</inf> = t<sup>m<inf>1</inf></sup>, X<inf>2</inf> = t<sup>m<inf>2</inf></sup>, Y = t<sup>n</sup> is a graded R-module, where R is the polynomial ring k[X<inf>0</inf>, X<inf>1</inf>, X<inf>2</inf>, Y] with the grading degX<inf>i</inf>: = m<inf>i</inf>, degY: = n. In this paper, we construct a minimal graded free resolution for k[Γ].
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/21784
Subjects
Arithmetic sequences | Betti numbers | minimal free resolution | monomial curves
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify