Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Geomorphic diversity as a river management tool and its application to the Ganga River, India
 
  • Details

Geomorphic diversity as a river management tool and its application to the Ganga River, India

Source
River Research and Applications
ISSN
15351459
Date Issued
2017-09-01
Author(s)
Sinha, R.
Mohanta, H.
Jain, V.  
Tandon, S. K.
DOI
10.1002/rra.3154
Volume
33
Issue
7
Abstract
Understanding of geomorphic processes and the determination of geomorphic diversity in catchments are prerequisites for the sustainable rehabilitation of river systems and for reach-scale assessment of river health. The Ganga River system in India is a large, complex system consisting of several long tributaries, some >1,000 km, originating from 2 distinct hinterlands—the Himalaya to the north and the cratons to the south. Traversing through a diverse climatic regime across the Plain and through precipitation zones ranging from 600 mm/year near Delhi to 1,200 mm/year in the eastern plains, the Ganga River system has formed very diverse landform assemblages in 3 major geomorphic domains. We have recognized 10 different river classes for the trunk river from Gangotri (source) to Farakka (upstream of its confluence with the Brahmaputra) based on (a) landscape setting, (b) channel and active floodplain properties, and (c) channel planform parameters. The mountainous stretch is characterized by steep valleys and bedrock channels and is dominated by large-scale sediment production and transport through hill slope processes. The alluvial part of the river is characterized by 8 different river classes of varying reach lengths (60–300 km) many of which show sharp transitions in landscape setting. We have highlighted the application of this approach for the assessment of habitat suitability, environmental flows, and flood risk all of which have been significantly modified during the last few decades due to large-scale anthropogenic disturbances. We suggest that the diversity embedded in this geomorphic framework can be useful for developing a sustainable river management programme to “work with” the contemporary character and behaviour of rivers.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22401
Subjects
geomorphic heterogeneity | large rivers | river futures | river health | river management
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify