Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion
 
  • Details

Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion

Source
Electronic Journal of Differential Equations
Date Issued
2020-01-01
Author(s)
Arumugam, Gurusamy
Erhardt, André H.
Volume
2020
Abstract
We establish the existence and uniqueness of weak solutions to the parabolic system with nonstandard growth condition and cross diffusion, ∂<inf>t</inf>u − div a(x, t, ∇u)) = div |F |<sup>p(x,t)−2</sup>F ), ∂<inf>t</inf>v − div a(x, t, ∇v)) = δ∆u, where δ ≥ 0 and ∂<inf>t</inf>u, ∂<inf>t</inf>v denote the partial derivative of u and v with respect to the time variable t, while ∇u and ∇v denote the one with respect to the spatial variable x. Moreover, the vector field a(x, t, ·) satisfies certain nonstandard p(x, t) growth, monotonicity and coercivity conditions.
URI
https://d8.irins.org/handle/IITG2025/25708
Subjects
Cross diffusion | Nonlinear parabolic problem | Nonstandard growth
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify