Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. DETERMINING TIME-DEPENDENT CONVECTION AND DENSITY TERMS IN A CONVECTION-DIFFUSION EQUATION USING PARTIAL DATA
 
  • Details

DETERMINING TIME-DEPENDENT CONVECTION AND DENSITY TERMS IN A CONVECTION-DIFFUSION EQUATION USING PARTIAL DATA

Source
COMMUNICATIONS ON ANALYSIS AND COMPUTATION
Date Issued
2025-03-01
Author(s)
Purohit, Anamika
DOI
10.3934/cac.2025004
Volume
3
Abstract
This article studies an inverse boundary value problem for the time-dependent convection-diffusion equation. We use the nonlinear Carle-man weight to uniquely recover the time-dependent convection term and time-dependent density coefficient. Nonlinear weight allows us to prove the uniqueness of the coefficients by making measurements on possibly a small subset of the boundary. We show that the convection term and the density coefficient can be recovered up to the natural gauge from the knowledge of the Dirichlet to Neumann map measured on a small open subset of the boundary.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/19322
Subjects
Mathematics
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify