Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Improving the wetting and dissolution of ibuprofen using solventless co-milling
 
  • Details

Improving the wetting and dissolution of ibuprofen using solventless co-milling

Source
International Journal of Pharmaceutics
ISSN
03785173
Date Issued
2017-11-25
Author(s)
Varghese, Sophia
Ghoroi, Chinmay  
DOI
10.1016/j.ijpharm.2017.09.062
Volume
533
Issue
1
Abstract
The wetting and dissolution of a BCS class II drug (Ibuprofen) is enhanced by solventless solid dispersion technique using co-milling. The co-milling is performed in a planetary ball mill using 1:1 wt. ratio of Ibuprofen (drug) and Microcrystalline cellulose, MCC (excipient). The improvement in wettability and dissolution after co-milling are compared with the raw ibuprofen, ball-milled ibuprofen without any excipient and v-blend mixture of ibuprofen with an excipient. The changes in crystal level properties and reduction in crystallinity due to co-milling are measured using Powder X-ray diffraction (P-XRD) and Differential Scanning Calorimetry (DSC) respectively. The increased interaction between ibuprofen and MCC as well as hydrogen bond formation is confirmed by Fourier Transform Infrared Spectroscopy (FTIR). The morphological changes are observed by optical microscopy and Field Emission Scanning Electron Microscopy (FESEM). The miscibility of drug and excipient and evidence of formation of glassy solutions are demonstrated by Modulated Temperature Differential Scanning Calorimetry (MTDSC) and Raman microscopy. The surface energy and wetting properties are determined using Inverse Gas Chromatography (IGC) and sessile drop method respectively. The results show that co-milling generates defects, strain, and reduction in crystallite size (changes in crystal level properties) which are responsible for the improvement of wetting and dissolution (96% in 90 min). Also, with increase in co-milling time, the polar surface energy increases and the hydrophobic ibuprofen drug surface transforms into hydrophilic surface due to increase in –OH groups of MCC on the ibuprofen surface. The present work quantified all the above-mentioned parameters including the acidic and basic parameters of co-milled ibuprofen using IGC. The technique improves the wetting and dissolution of hydrophobic drugs. It can be very well extended to BCS class II and IV drugs in the presence of different hydrophilic excipients.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22353
Subjects
Co-milling | Defects | Dissolution | Hydrophilicity | Solid dispersion | Strain | Wettability
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify