Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Anomaly detection in high-energy physics using a quantum autoencoder
 
  • Details

Anomaly detection in high-energy physics using a quantum autoencoder

Journal
Physical Review D
ISSN
24700010
Date Issued
2022-05-01
Author(s)
Ngairangbam, Vishal S.
Spannowsky, Michael
Takeuchi, Michihisa
DOI
10.1103/PhysRevD.105.095004
Abstract
The lack of evidence for new interactions and particles at the Large Hadron Collider (LHC) has motivated the high-energy physics community to explore model-agnostic data-analysis approaches to search for new physics. Autoencoders are unsupervised machine learning models based on artificial neural networks, capable of learning background distributions. We study quantum autoencoders based on variational quantum circuits for the problem of anomaly detection at the LHC. For a QCD tt¯ background and resonant heavy-Higgs signals, we find that a simple quantum autoencoder outperforms classical autoencoders for the same inputs and trains very efficiently. Moreover, this performance is reproducible on present quantum devices. This shows that quantum autoencoders are good candidates for analysing high-energy physics data in future LHC runs.
Volume
105
Publication link
http://link.aps.org/pdf/10.1103/PhysRevD.105.095004
Sherpa Url
https://v2.sherpa.ac.uk/id/publication/32264
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your Institution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify