Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Thermal relaxation, electrical conductivity, and charge diffusion in a hot QCD medium
 
  • Details

Thermal relaxation, electrical conductivity, and charge diffusion in a hot QCD medium

Source
Physical Review D
ISSN
24700010
Date Issued
2016-08-11
Author(s)
Mitra, Sukanya
Chandra, Vinod  
DOI
10.1103/PhysRevD.94.034025
Volume
94
Issue
3
Abstract
The response of electromagnetic (EM) fields that are produced in noncentral heavy-ion collisions to electromagnetically charged quark gluon plasma can be understood in terms of charge transport and charge diffusion in the hot QCD medium. This article presents a perspective on these processes by investigating the temperature behavior of the related transport coefficients, viz. electrical conductivity and the charge diffusion coefficients along with charge susceptibility. In the process of estimating them, thermal relaxation times for quarks and gluons have been determined first. These transport coefficients have been studied by solving the relativistic transport equation in the Chapman-Enskog method. For the analysis, 2→2, quark-quark, quark-gluon and gluon-gluon scattering processes are taken into account along with an effective description of hot QCD equations of state (EOSs) in terms of temperature dependent effective fugacities of quasiquarks (antiquarks) and quasigluons. Both improved perturbative hot QCD EOSs at high temperature and a lattice QCD EOS are included for the analysis. The hot QCD medium effects entering through the quasiparticle momentum distributions along with an effective coupling, are seen to have significant impact on the temperature behavior of these transport parameters along with the thermal relaxation times for the quasigluons and quasiquarks.
Publication link
https://arxiv.org/pdf/1606.08556
URI
https://d8.irins.org/handle/IITG2025/21851
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify