Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
 
  • Details

Precise Probing of the Inert Higgs-Doublet Model at the LHC

Source
Springer Proceedings in Physics
ISSN
09308989
Date Issued
2024-01-01
Author(s)
Ghosh, Anupam
Konar, Partha
Seth, Satyajit
DOI
10.1007/978-981-97-0289-3_27
Volume
304 SPPHY
Abstract
The inert Higgs-doublet model provides a simple framework to accommodate a viable Higgs portal scalar dark matter candidate, together with other heavier scalars of mass 100 GeV or more. We study the effect of next-to-leading order (NLO) QCD corrections in this scenario in the context of the Large Hadron Collider. O(α<inf>s</inf>) corrections to the gluon-gluon-Higgs effective coupling have been taken into account in this study wherever appropriate. We find such corrections have a significant impact on various kinematic distributions and reduce scale uncertainties substantially. Fixed order NLO results are matched to the Pythia8 parton shower (PS) and the di-fatjet signal associated with the missing transverse momentum is analyzed, as this channel has the ability to explore its entire parameter space during the next phase of the LHC run. A closer look at the NLO+PS computation indicates a sizable NLO effect together with a subdued contribution from associated production of the heavy scalar compared to the pair production, thereby leading to a refined analysis strategy during the multivariate analysis of this signal.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/29164
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify