Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Formation of primordial black holes from warm inflation
 
  • Details

Formation of primordial black holes from warm inflation

Source
arXiv
ISSN
2331-8422
Date Issued
2019-10-01
Author(s)
Arya, Richa
Abstract
Primordial Black Holes (PBHs) serve as a unique probe to the physics of the early Universe, particularly inflation. In light of this, we study the formation of PBHs by the collapse of overdense perturbations generated during a model of warm inflation. For our model, we find that the primordial curvature power spectrum is red-tilted (spectral index ns<1) at the large scale (small k) and is consistent with the ns?r values allowed from the CMB observations. Along with that, it has a blue-tilt (ns>1) for the small PBH scales (large k), with a sufficiently large amplitude of the primordial curvature power spectrum required to form PBHs. These features originate because of the inflaton's coupling with the other fields during warm inflation. We discuss the role of the inflaton dissipation to the enhancement in the primordial power spectrum at the PBH scales. We find that for some parameter range of our warm inflation model, PBHs with mass ?103 g can be formed with significant abundance. Such tiny mass PBHs have a short lifetime ?10?19 s and would have evaporated into Hawking radiation in the early Universe. Further in this study, we discuss the evaporation constraints on the initial mass fraction of the generated PBHs and the possibility of Planck mass PBH relics to constitute the dark matter.
URI
http://arxiv.org/abs/1910.05238
https://d8.irins.org/handle/IITG2025/18352
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify