Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Structure and Rheology of Hydrogels: Applications in Drug Delivery
 
  • Details

Structure and Rheology of Hydrogels: Applications in Drug Delivery

Source
Biointerface Engineering Prospects in Medical Diagnostics and Drug Delivery
Date Issued
2020-01-01
Author(s)
Marapureddy, Sai Geetha
Thareja, Prachi  
DOI
10.1007/978-981-15-4790-4_4
Abstract
Recent advances in synthetic chemistry has led to the increasingly sophisticated design and preparation of biofunctional polymeric surfaces and materials. In this regard, synthetic poly-(N-substituted glycine) “peptoids” which mimic the structure and function of peptides play an important role, since they may attain functionalities similar to natural biopolymers. This chapter reviews efforts by our group and others to develop “antifouling” peptoid coatings that resist the nonspecific and undesired adsorption of proteins and attachment of mammalian and microbial cells. We have found that the simplest peptoid—polysarcosine—has been found to be well hydrated and therefore well-suited for antifouling applications. We show that the synthetic convenience of peptoids in general greatly facilitates studies on how polymer chain length, chain density, sidechain chemistry, and specific peptoid sequences may control surface interactions. Indeed, specific peptoids and sequence arrangements have been found to exhibit long-term antifouling properties and excellent resistance against different strains of bacteria. Addition of simple sugar groups to peptoid chains may further enhance resistance against bacterial attachment. Combined with peptoid’s resistance against enzymatic degradation, antifouling peptoids have excellent potential in biomedical applications. These range from coatings of catheters and other biological devices to biosensing and nanomedicine that require a non-fouling interface to achieve improved device performance.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/27168
Subjects
Antibacterial | Antifouling | Bio-mimetic | Chain length and density | Peptoids | Sequence-specific
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify