Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Black hole topology in f(R) gravity
 
  • Details

Black hole topology in f(R) gravity

Source
Classical and Quantum Gravity
ISSN
02649381
Date Issued
2018-06-25
Author(s)
Mishra, Akash K.
Rahman, Mostafizur
Sarkar, Sudipta  
DOI
10.1088/1361-6382/aacc20
Volume
35
Issue
14
Abstract
Hawkings topology theorem in general relativity restricts the cross-section of the event horizon of a black hole in 3 + 1 dimension to be either spherical or toroidal. The toroidal case is ruled out by the topology censorship theorems. In this article, we discuss the generalization of this result to black holes in f (R) gravity in 3 + 1 and higher dimensions. We obtain a sufficient differential condition on the function f '(R), which restricts the topology of the horizon cross-section of a black hole in f (R) gravity in 3 + 1 dimension to be either S2 or S1 S1. We also extend the result to higher dimensional black holes and show that the same sufficient condition also restricts the sign of the Yamabe invariant of the horizon cross-section.
Publication link
https://arxiv.org/pdf/1806.06596
URI
https://d8.irins.org/handle/IITG2025/22829
Subjects
conformal transformation | Euler characteristics | f (R) gravity | Killing horizon | Yamabe invariant
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify