Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. On a characterization of Spartan graphs
 
  • Details

On a characterization of Spartan graphs

Source
arXiv
Date Issued
2025-04-01
Abstract
The eternal vertex cover game is played between an attacker and a defender on an undirected graph G. The defender identifies k vertices to position guards on to begin with. The attacker, on their turn, attacks an edge e, and the defender must move a guard along e to defend the attack. The defender may move other guards as well, under the constraint that every guard moves at most once and to a neighboring vertex. The smallest number of guards required to defend attacks forever is called the eternal vertex cover number of G, denoted evc(G).
For any graph G, evc(G) is at least the vertex cover number of G, denoted mvc(G). A graph is Spartan if evc(G)=mvc(G). It is known that a bipartite graph is Spartan if and only if every edge belongs to a perfect matching. We show that the only K�nig graphs that are Spartan are the bipartite Spartan graphs. We also give new lower bounds for evc(G), generalizing a known lower bound based on cut vertices. We finally show a new matching-based characterization of all Spartan graphs.
URI
http://arxiv.org/abs/2504.06832
https://d8.irins.org/handle/IITG2025/19881
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify