Flash/no-flash image fusion using dictionary learning
Source
2015 5th National Conference on Computer Vision Pattern Recognition Image Processing and Graphics Ncvpripg 2015
Date Issued
2016-06-10
Author(s)
Abstract
An image captured in dark environment usually has ambient illumination, but the image looks dark and noisy. However, the use of flash can introduce unwanted artifacts such as sharp shadows at silhouettes, red eyes, and non-uniform brightness in the image. We propose a new framework to enhance photographs captured in dark environments by combining the best features from a flash and a no-flash image. We use sparse and redundant dictionary learning based approach to denoise the no-flash image. A weighted least squares framework is used to transfer sharp details from the flash image into the no-flash image. We show that our approach is simple and able to generate better images than that of the state-of-the-art flash/no-flash fusion method.
