Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A Bayesian Hierarchical Framework for Postprocessing Daily Streamflow Simulations across a River Network
 
  • Details

A Bayesian Hierarchical Framework for Postprocessing Daily Streamflow Simulations across a River Network

Source
Journal of Hydrometeorology
ISSN
1525755X
Date Issued
2022-06-01
Author(s)
Ossandón, Álvaro
Nanditha, J. S.
Mendoza, Pablo A.
Rajagopalan, Balaji
Mishra, Vimal  
DOI
10.1175/JHM-D-21-0167.1
Volume
23
Issue
6
Abstract
Despite the potential and increasing interest in physically based hydrological models for streamflow forecasting applications, they are constrained in terms of agility to generate ensembles. Hence, we develop and test a Bayesian hierarchical model (BHM) to postprocess physically based hydrologic model simulations at multiple sites on a river network, with the aim to generate probabilistic information (i.e., ensembles) and improve raw model skill. We apply our BHM framework to daily summer (July–August) streamflow simulations at five stations located in the Narmada River basin in central India, forcing the Variable Infiltration Capacity (VIC) model with observed rainfall. In this approach, daily observed streamflow at each station is modeled with a conditionally independent probability density function with time varying distribution parameters, which are modeled as a linear function of potential covariates that include VIC outputs and meteorological variables. Using suitable priors on the parameters, posterior parameters and predictive posterior distributions_and thus ensembles_of daily streamflow are obtained. The best BHM model considers a gamma distribution and uses VIC streamflow and a nonlinear covariate formulated as the product of VIC streamflow and 2-day precipitation spatially averaged across the area between the current and upstream station. The second covariate enables correcting the time delay in flow peaks and nonsystematic biases in VIC streamflow. The results show that the BHM postprocessor increases probabilistic skill in 60% compared to raw VIC simulations, providing reliable ensembles for most sites. This modeling approach can be extended to combine forecasts from multiple sources and provide skillful multimodel ensemble forecasts.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26068
Subjects
Bayesian methods | Ensembles | Postprocessing | Statistical forecasting | Statistical techniques
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify