Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Theoretical Study on Vertically Coupled Stranski-Krastanov (SK) on Sub Monolayer (SML) InAs Quantum Dot Heterostructures Employing Ternary and Quaternary Barrier Materials
 
  • Details

Theoretical Study on Vertically Coupled Stranski-Krastanov (SK) on Sub Monolayer (SML) InAs Quantum Dot Heterostructures Employing Ternary and Quaternary Barrier Materials

Source
IEEE Transactions on Nanotechnology
ISSN
1536125X
Date Issued
2023-01-01
Author(s)
Kumar, Ravindra
Choudhary, Samishta
Saha, Jhuma  
Chakrabarti, Subhananda
DOI
10.1109/TNANO.2023.3276210
Volume
22
Abstract
This work presents the impact of barrier spacer on the structural and optical properties of strain-coupled Stranski-Krastanov (SK) on Sub Monolayer (SML) quantum dot (QD) heterostructures. Various ternary and quaternary materials have been employed as the barrier layer of SK-SML QD heterostructures. In the coupled SK-SML QDs, the residual strain propagates from the SML seed layer towards the top SK dots, introducing defects and dislocations. After employing the ternary (GaAs1-ySby) and quaternary (InxAl0.21Ga1-.0.21-xAs and In0.18Ga0.82As1-ySby) materials, the residual strain reduces, reducing the defects which thereby helps in increasing the crystalline quality of the heterostructure. Nextnano software has been used to compute the structures' strain, energy band profile, probability density functions, and emission wavelength. Two strain components, viz. hydrostatic as well as biaxial strain, have been computed and compared for all the heterostructures to understand the distribution of the strain profile. The emission wavelength is red-shifted for the SK-SML QD heterostructures with ternary and quaternary materials as a barrier layer as compared to that of the GaAs barrier. Moreover, type-I and II energy band profiles are observed for Sb-based barrier material, appropriate for various optoelectronic applications. This is a comparative study of SK-SML QDs with various barrier materials helps minimize the strain and defects and improve the device performance.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26987
Subjects
Emission wavelength | energy band | quantum dot | SK-SML | strain | type-I/II
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify