Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. An induction principle for the Bombieri-Vinogradov theorem over Fq[t] and a variant of the Titchmarsh divisor problem
 
  • Details

An induction principle for the Bombieri-Vinogradov theorem over Fq[t] and a variant of the Titchmarsh divisor problem

Source
Journal of Mathematical Analysis and Applications
ISSN
0022247X
Date Issued
2023-05-15
Author(s)
Dey, Sampa
Savalia, Aditi
DOI
10.1016/j.jmaa.2022.126928
Volume
521
Issue
2
Abstract
Let F<inf>q</inf>[t] be the polynomial ring over the finite field F<inf>q</inf>. For arithmetic functions ψ<inf>1</inf>,ψ<inf>2</inf>:F<inf>q</inf>[t]→C, we establish that if a Bombieri-Vinogradov type equidistribution result holds for ψ<inf>1</inf> and ψ<inf>2</inf>, then it also holds for their Dirichlet convolution ψ<inf>1</inf>⁎ψ<inf>2</inf>. As an application of this, we resolve a version of the Titchmarsh divisor problem in F<inf>q</inf>[t]. More precisely, we obtain an asymptotic for the average behaviour of the divisor function over shifted products of two primes in F<inf>q</inf>[t].
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26799
Subjects
Bombieri-Vinogradov theorem | Divisor function | Finite fields | Function fields | Large sieve inequality | Titchmarsh divisor problem
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify