Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. On the design of a dense array to extract rotational components of earthquake ground motion
 
  • Details

On the design of a dense array to extract rotational components of earthquake ground motion

Source
Bulletin of Earthquake Engineering
ISSN
1570761X
Date Issued
2017-03-01
Author(s)
Basu, Dhiman  
Whittaker, Andrew S.
Constantinou, Michael C.
DOI
10.1007/s10518-016-9992-6
Volume
15
Issue
3
Abstract
Data recorded from dense seismic arrays such as the Large Scale Seismic Testing array in Lotung, Taiwan, are used for multiple purposes, including development of attenuation and coherency functions, computing dynamic strains in soil, and estimating rotational components of ground motion. The required footprint of a seismic array deployed to compute rotational components of ground motion is a function of the method used for the computations and site specific characteristics, including the apparent seismic wave velocity and the frequency content of expected ground motions. A design procedure for a general two-dimensional seismic array is presented together with a site-specific example using the Surface Distribution Method to extract the rotational components of ground motion. A sensitivity study is performed to determine how the location of recording stations of translational motion in a dense array affects the computed rotational components of earthquake ground motion.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/21776
Subjects
Array dimensions | Rotational components | Seismic array | Sensitivity study
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify