Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Improving convergence in finite word length nonlinear active noise control systems
 
  • Details

Improving convergence in finite word length nonlinear active noise control systems

Source
International Conference on Digital Signal Processing DSP
Date Issued
2015-09-09
Author(s)
Shah, Raj
Reddy, Sandeep
Patel, Vinal
George, Nithin V.  
DOI
10.1109/ICDSP.2015.7251936
Volume
2015-September
Abstract
An attempt has been made in this paper to improve the convergence of functional link artificial neural network (FLANN) based nonlinear active noise control (ANC) systems. This improvement has been achieved by formulating a recursive least square (RLS) training mechanism. However, FLANN-RLS ANC systems are not effective in noise mitigation when implemented in a finite word length scenario. A QR-RLS based training mechanism has been designed to improved convergence even in reduced word length implementations. A simulation study has been carried out to study the effectiveness of the proposed scheme in improving convergence when finite word length implementation is attempted. The proposed FLANN-QRRLS scheme has been shown to improve convergence behaviour in comparison with other schemes compared.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22024
Subjects
Active noise control | finite word lengths | Functional link artificial neural network | QR decomposition | recursive least square
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify